Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 431
Filtrar
1.
Virol Sin ; 37(2): 229-237, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35527224

RESUMO

The Getah virus (GETV), a mosquito-borne RNA virus, is widely distributed in Oceania and Asia. GETV is not the only pathogenic to horses, pigs, cattle, foxes and boars, but it can also cause fever in humans. Since its first reported case in Chinese mainland in 2017, the number of GETV-affected provinces has increased to seventeen till now. Therefore, we performed an epidemiologic investigation of GETV in the Xinjiang region, located in northwestern China, during the period of 2017-2020. ELISA was used to analyze 3299 serum samples collected from thoroughbred horse, local horse, sheep, goat, cattle, and pigs, with thoroughbred horse (74.8%), local horse (67.3%), goat (11.7%), sheep (10.0%), cattle (25.1%) and pigs (51.1%) being positive for anti-GETV antibodies. Interestingly, the neutralizing antibody titer in horses was much higher than in other species. Four samples from horses and pigs were positive for GETV according to RT-PCR. Furthermore, from the serum of a local horse, we isolated GETV which was designated as strain XJ-2019-07, and determined its complete genome sequence. From the phylogenetic relationships, it belongs to the Group III lineage. This is the first evidence of GETV associated to domestic animals in Xinjiang. Overall, GETV is prevalent in Xinjiang and probably has been for several years. Since no vaccine against GETV is available in China, detection and monitoring strategies should be improved in horses and pigs, especially imported and farmed, in order to prevent economic losses.


Assuntos
Alphavirus , Culicidae , Alphavirus/genética , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Bovinos/virologia , China/epidemiologia , Culicidae/virologia , Cabras/virologia , Cavalos/virologia , Masculino , Filogenia , Análise de Sequência de DNA , Estudos Soroepidemiológicos , Ovinos/virologia , Suínos/virologia
2.
Emerg Microbes Infect ; 11(1): 662-675, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35105272

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for a global pandemic that has had significant impacts on human health and economies worldwide. SARS-CoV-2 is highly transmissible and the cause of coronavirus disease 2019 in humans. A wide range of animal species have also been shown to be susceptible to SARS-CoV-2 by experimental and/or natural infections. Sheep are a commonly farmed domestic ruminant that have not been thoroughly investigated for their susceptibility to SARS-CoV-2. Therefore, we performed in vitro and in vivo studies which consisted of infection of ruminant-derived cells and experimental challenge of sheep to investigate their susceptibility to SARS-CoV-2. Our results showed that sheep-derived kidney cells support SARS-CoV-2 replication. Furthermore, the experimental challenge of sheep demonstrated limited infection with viral RNA shed in nasal and oral swabs at 1 and 3-days post challenge (DPC); viral RNA was also detected in the respiratory tract and lymphoid tissues at 4 and 8 DPC. Sero-reactivity was observed in some of the principal infected sheep but not the contact sentinels, indicating that transmission to co-mingled naïve sheep was not highly efficient; however, viral RNA was detected in respiratory tract tissues of sentinel animals at 21 DPC. Furthermore, we used a challenge inoculum consisting of a mixture of two SARS-CoV-2 isolates, representatives of the ancestral lineage A and the B.1.1.7-like alpha variant of concern, to study competition of the two virus strains. Our results indicate that sheep show low susceptibility to SARS-CoV-2 infection and that the alpha variant outcompeted the lineage A strain.


Assuntos
COVID-19 , Coinfecção , Ovinos/virologia , Animais , COVID-19/veterinária , Coinfecção/veterinária , SARS-CoV-2
3.
J Med Microbiol ; 71(2)2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35144720

RESUMO

Maedi-visna (MV) is a lentiviral disease of sheep responsible for severe production losses in affected flocks. There are no vaccination or treatment options with control reliant on test and cull strategies. The most common diagnostic methods used at present are combination ELISAs for Gag and Env proteins with virus variability making PCR diagnostics still largely an experimental tool. To assess variability in viral loads and diagnostic tests results, serology, DNA and RNA viral loads were measured in the blood of 12 naturally infected rams repeatedly blood sampled over 16 months. Six animals tested negative in one or more tests at one or more time points and would have been missed on screening programmes reliant on one test method or a single time point. In addition the one animal homozygous for the 'K' allele of the TMEM154 E35K SNP maintained very low viral loads in all assays and apparently cleared infection to below detectable limits at the final time point it was sampled. This adds crucial data to the strong epidemiological evidence that this locus represents a genuine resistance marker for MV infection and is a strong candidate for selective breeding of sheep for resistance to disease.


Assuntos
Proteínas de Membrana/genética , Pneumonia Intersticial Progressiva dos Ovinos , Ovinos/virologia , Visna , Alelos , Animais , Resistência à Doença , Estudos Longitudinais , Masculino , Pneumonia Intersticial Progressiva dos Ovinos/diagnóstico , Pneumonia Intersticial Progressiva dos Ovinos/genética , Polimorfismo de Nucleotídeo Único , Ovinos/genética , Carga Viral , Visna/diagnóstico , Visna/genética , Vírus Visna-Maedi
4.
Viruses ; 13(12)2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34960798

RESUMO

Small ruminant lentiviruses (SRLVs) are a group of highly divergent viruses responsible for global infection in sheep and goats. In a previous study we showed that SRLV strains found in mixed flocks in Poland belonged to subtype A13 and A18, but this study was restricted only to the few flocks from Malopolska region. The present work aimed at extending earlier findings with the analysis of SRLVs in mixed flocks including larger numbers of animals and flocks from different part of Poland. On the basis of gag and env sequences, Polish SRLVs were assigned to the subtypes B2, A5, A12, and A17. Furthermore, the existence of a new subtypes, tentatively designed as A23 and A24, were described for the first time. Subtypes A5 and A17 were only found in goats, subtype A24 has been detected only in sheep while subtypes A12, A23, and B2 have been found in both sheep and goats. Co-infection with strains belonging to different subtypes was evidenced in three sheep and two goats originating from two flocks. Furthermore, three putative recombination events were identified within gag and env SRLVs sequences derived from three sheep. Amino acid (aa) sequences of immunodominant epitopes in CA protein were well conserved while Major Homology Region (MHR) had more alteration showing unique mutations in sequences of subtypes A5 and A17. In contrast, aa sequences of surface glycoprotein exhibited higher variability confirming type-specific variation in the SU5 epitope. The number of potential N-linked glycosylation sites (PNGS) ranged from 3 to 6 in respective sequences and were located in different positions. The analysis of LTR sequences revealed that sequences corresponding to the TATA box, AP-4, AML-vis, and polyadenylation signal (poly A) were quite conserved, while considerable alteration was observed in AP-1 sites. Interestingly, our results revealed that all sequences belonging to subtype A17 had unique substitution T to A in the fifth position of TATA box and did not have a 11 nt deletion in the R region which was noted in other sequences from Poland. These data revealed a complex picture of SRLVs population with ovine and caprine strains belonging to group A and B. We present strong and multiple evidence of dually infected sheep and goats in mixed flocks and present evidence that these viruses can recombine in vivo.


Assuntos
Cabras/virologia , Infecções por Lentivirus/transmissão , Lentivirus/genética , Recombinação Genética , Ovinos/virologia , Animais , Lentivirus/classificação , Infecções por Lentivirus/virologia , Filogenia , Sequências Repetidas Terminais
5.
Emerg Microbes Infect ; 10(1): 2199-2201, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34749583

RESUMO

We report pilot studies to evaluate the susceptibility of common domestic livestock (cattle, sheep, goat, alpaca, rabbit, and horse) to intranasal infection with SARS-CoV-2. None of the infected animals shed infectious virus via nasal, oral, or faecal routes, although viral RNA was detected in several animals. Further, neutralizing antibody titres were low or non-existent one month following infection. These results suggest that domestic livestock are unlikely to contribute to SARS-CoV-2 epidemiology.


Assuntos
COVID-19/veterinária , Especificidade de Hospedeiro , Gado/virologia , SARS-CoV-2/patogenicidade , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , COVID-19/imunologia , COVID-19/virologia , Camelídeos Americanos/virologia , Bovinos/virologia , Chlorocebus aethiops , Reservatórios de Doenças/virologia , Cabras/virologia , Cavalos/virologia , Especificidade de Hospedeiro/imunologia , Humanos , Cavidade Nasal/virologia , RNA Viral/análise , Coelhos/virologia , Reto/virologia , Sistema Respiratório/virologia , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Ovinos/virologia , Especificidade da Espécie , Células Vero , Eliminação de Partículas Virais , Vísceras/virologia
6.
Front Immunol ; 12: 705539, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34594325

RESUMO

The Morbillivirus peste des petits ruminants virus (PPRV) is the causal agent of a highly contagious disease that mostly affects sheep and goats and produces considerable losses in developing countries. Current PPRV control strategies rely on live-attenuated vaccines, which are not ideal, as they cannot differentiate infected from vaccinated animals (DIVA). Recombinant vector-based vaccines expressing viral subunits can provide an alternative to conventional vaccines, as they can be easily paired with DIVA diagnostic tools. In the present work, we used the bovine herpesvirus-4-based vector (BoHV-4-A) to deliver PPRV hemagglutinin H antigen (BoHV-4-A-PPRV-H-ΔTK). Vaccination with BoHV-4-A-PPRV-H-ΔTK protected sheep from virulent PPRV challenge and prevented virus shedding. Protection correlated with anti-PPRV IgGs, neutralizing antibodies and IFN-γ-producing cells induced by the vaccine. Detection of antibodies exclusively against H-PPRV in animal sera and not against other PPRV viral proteins such as F or N could serve as a DIVA diagnostic test when using BoHV-4-A-PPRV-H-ΔTK as vaccine. Our data indicate that BoHV-4-A-PPRV-H-ΔTK could be a promising new approach for PPRV eradication programs.


Assuntos
Vetores Genéticos , Herpesvirus Bovino 4 , Peste dos Pequenos Ruminantes/prevenção & controle , Vírus da Peste dos Pequenos Ruminantes , Doenças dos Ovinos/imunologia , Ovinos/imunologia , Proteínas Virais , Vacinas Virais , Animais , Chlorocebus aethiops , Cães , Vetores Genéticos/genética , Vetores Genéticos/imunologia , Herpesvirus Bovino 4/genética , Herpesvirus Bovino 4/imunologia , Peste dos Pequenos Ruminantes/genética , Peste dos Pequenos Ruminantes/imunologia , Vírus da Peste dos Pequenos Ruminantes/genética , Vírus da Peste dos Pequenos Ruminantes/imunologia , Ovinos/virologia , Doenças dos Ovinos/virologia , Células Vero , Proteínas Virais/genética , Proteínas Virais/imunologia , Vacinas Virais/genética , Vacinas Virais/imunologia
7.
Int J Mol Sci ; 22(18)2021 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-34575988

RESUMO

Maedi-Visna-like genotype A strains and Caprine arthritis encephaltis-like genotype B strains are small ruminant lentiviruses (SRLV) which, for incompletely understood reasons, appear to be more virulent in sheep and goats, respectively. A 9-month in vivo infection experiment using Belgian genotype A and B SRLV strains showed that almost all homologous (genotype A in sheep; genotype B in goats) and heterologous (genotype A in goats; genotype B in sheep) intratracheal inoculations resulted in productive infection. No differences in viremia and time to seroconversion were observed between homologous and heterologous infections. Higher viral loads and more severe lesions in the mammary gland and lung were however detected at 9 months post homologous compared to heterologous infection which coincided with strongly increased IFN-γ mRNA expression levels upon homologous infection. Pepscan analysis revealed a strong antibody response against immune-dominant regions of the capsid and surface proteins upon homologous infection, which was absent after heterologous infection. These results inversely correlated with protection against virus replication in target organs and observed histopathological lesions, and thus require an in-depth evaluation of a potential role of antibody dependent enhancement in SRLV infection. Finally, no horizontal intra- and cross-species SRLV transmission to contact animals was detected.


Assuntos
Vírus da Artrite-Encefalite Caprina/fisiologia , Genótipo , Doenças das Cabras/imunologia , Cabras , Imunidade Humoral , Pneumonia Intersticial Progressiva dos Ovinos/imunologia , Ovinos , Replicação Viral/imunologia , Vírus Visna-Maedi/fisiologia , Animais , Anticorpos Antivirais/imunologia , Feminino , Doenças das Cabras/genética , Doenças das Cabras/patologia , Doenças das Cabras/virologia , Cabras/imunologia , Cabras/virologia , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Glândulas Mamárias Animais/imunologia , Glândulas Mamárias Animais/patologia , Glândulas Mamárias Animais/virologia , Pneumonia Intersticial Progressiva dos Ovinos/genética , Pneumonia Intersticial Progressiva dos Ovinos/patologia , Pneumonia Intersticial Progressiva dos Ovinos/virologia , Ovinos/imunologia , Ovinos/virologia , Especificidade da Espécie , Carga Viral/imunologia
8.
Viruses ; 13(9)2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34578292

RESUMO

Small ruminant lentiviruses (SRLVs) infections lead to chronic diseases and remarkable economic losses undermining health and welfare of animals and the sustainability of farms. Early and definite diagnosis of SRLVs infections is the cornerstone for any control and eradication efforts; however, a "gold standard" test and/or diagnostic protocols with extensive applicability have yet to be developed. The main challenges preventing the development of a universally accepted diagnostic tool with sufficient sensitivity, specificity, and accuracy to be integrated in SRLVs control programs are the genetic variability of SRLVs associated with mutations, recombination, and cross-species transmission and the peculiarities of small ruminants' humoral immune response regarding late seroconversion, as well as intermittent and epitope-specific antibody production. The objectives of this review paper were to summarize the available serological and molecular assays for the diagnosis of SRLVs, to highlight their diagnostic performance emphasizing on advantages and drawbacks of their application, and to discuss current and future perspectives, challenges, limitations and impacts regarding the development of reliable and efficient tools for the diagnosis of SRLVs infections.


Assuntos
Infecções por Lentivirus/diagnóstico , Infecções por Lentivirus/imunologia , Lentivirus/genética , Lentivirus/imunologia , Ruminantes/virologia , Testes Sorológicos/veterinária , Animais , Vírus da Artrite-Encefalite Caprina/genética , Vírus da Artrite-Encefalite Caprina/imunologia , Doenças das Cabras/diagnóstico , Doenças das Cabras/virologia , Cabras/virologia , Lentivirus/classificação , Lentivirus/isolamento & purificação , Soroconversão , Testes Sorológicos/métodos , Ovinos/virologia , Doenças dos Ovinos/diagnóstico , Doenças dos Ovinos/virologia , Virologia/métodos , Vírus Visna-Maedi/genética , Vírus Visna-Maedi/imunologia
9.
Viruses ; 13(9)2021 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-34578299

RESUMO

Phleboviruses (genus Phlebovirus, family Phenuiviridae) are emerging pathogens of humans and animals. Sand-fly-transmitted phleboviruses are found in Europe, Africa, the Middle East, and the Americas, and are responsible for febrile illness and nervous system infections in humans. Rio Grande virus (RGV) is the only reported phlebovirus in the United States. Isolated in Texas from southern plains woodrats, RGV is not known to be pathogenic to humans or domestic animals, but serologic evidence suggests that sheep (Ovis aries) and horses (Equus caballus) in this region have been infected. Rift Valley fever virus (RVFV), a phlebovirus of Africa, is an important pathogen of wild and domestic ruminants, and can also infect humans with the potential to cause severe disease. The introduction of RVFV into North America could greatly impact U.S. livestock and human health, and the development of vaccines and countermeasures is a focus of both the CDC and USDA. We investigated the potential for serologic reagents used in RVFV diagnostic assays to also detect cells infected with RGV. Western blots and immunocytochemistry assays were used to compare the antibody detection of RGV, RVFV, and two other New World phlebovirus, Punta Toro virus (South and Central America) and Anhanga virus (Brazil). Antigenic cross-reactions were found using published RVFV diagnostic reagents. These findings will help to inform test interpretation to avoid false positive RVFV diagnoses that could lead to public health concerns and economically costly agriculture regulatory responses, including quarantine and trade restrictions.


Assuntos
Reações Cruzadas/imunologia , Phlebovirus/imunologia , Kit de Reagentes para Diagnóstico/normas , Vírus da Febre do Vale do Rift/imunologia , Testes Sorológicos/normas , Animais , Infecções por Bunyaviridae/classificação , Infecções por Bunyaviridae/diagnóstico , Infecções por Bunyaviridae/imunologia , Cavalos/virologia , Phlebovirus/classificação , Phlebovirus/patogenicidade , Febre do Vale de Rift/diagnóstico , Febre do Vale de Rift/imunologia , Vírus da Febre do Vale do Rift/patogenicidade , Testes Sorológicos/métodos , Ovinos/virologia , Estados Unidos
10.
Viruses ; 13(8)2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34452442

RESUMO

Phleboviruses are arboviruses transmitted by sand flies, mosquitoes and ticks. Some sand fly-borne phleboviruses cause illnesses in humans, such as the summer fevers caused by the Sicilian and Naples viruses or meningitis caused by the Toscana virus. Indeed, traces of several phleboviral infections have been serologically detected in domestic animals, but their potential pathogenic role in vertebrates other than humans is still unclear, as is the role of vertebrates as potential reservoirs of these viruses. In this study, we report the results of a serological survey performed on domestic animals sampled in Northern Italy, against four phleboviruses isolated from sand flies in the same area. The sera of 23 dogs, 165 sheep and 23 goats were tested with a virus neutralization assay for Toscana virus, Fermo virus, Ponticelli I virus and Ponticelli III virus. Neutralizing antibodies against one or more phleboviruses were detected in four out of 23 dogs, 31 out of 165 sheep and 12 out of 23 goats. This study shows preliminary evidence for the distribution pattern of phleboviral infections in different animal species, highlighting the potential infection of the Toscana virus in dogs and the Fermo virus in goats.


Assuntos
Animais Domésticos/virologia , Anticorpos Antivirais/sangue , Infecções por Bunyaviridae/sangue , Infecções por Bunyaviridae/veterinária , Phlebovirus/genética , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Infecções por Bunyaviridae/epidemiologia , Infecções por Bunyaviridae/imunologia , Cães/virologia , Cabras/virologia , Itália/epidemiologia , Testes de Neutralização , Phlebovirus/classificação , Phlebovirus/isolamento & purificação , Filogenia , Psychodidae/virologia , Ovinos/virologia
11.
Prev Vet Med ; 195: 105446, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34365125

RESUMO

A study was implemented to estimate the pestivirus seroprevalence in sheep and goats in Belgium, to identify circulating species and to check for a potential association between seropositivity of small ruminants and presence of cattle in the same farm. It was based on the testing of serum samples and bulk tank milk samples (BTM) collected in sheep and goat flocks in 2018-2019 all over the country. 7460 serum samples collected from 410 flocks were tested by a commercial ELISA able to detect antibodies (Ab) against Border Disease Virus (BDV), and Bovine Viral Diarrhea Virus (BVDV). BTM samples (n = 144) were collected from dairy flocks in November 2019 and tested with the same Ab ELISA. ELISA positive serum samples were also tested by virus neutralization test (VNT) for neutralizing antibodies against BDV, BVDV-type1 and BVDV-type2. Virological tests (RT-PCR) were performed on pools of serum samples from pestivirus-exposed flocks with at least two seropositive animals and on all Antibody-positive BTM samples. Information about serum and milk samples (identification, test results, farm of origin and location, presence of cattle) were gathered in animal-level and farm-level databases. Based on this study, the apparent animal seroprevalence for pestiviruses in small ruminant flocks in Belgium in 2018 was estimated to be 0.87 % (95 % C.I. [0.68 %-1.11 %]). The prevalence of flocks exposed to pestivirus (i.e. with at least one seropositive animal) was estimated to be 8.5 % (95 % C.I. [6.4 % - 11.6 %]). In exposed flocks, the average within-flock seroprevalence was 9.9 %. In dairy sheep and goats, the estimated proportion of exposed flocks in 2019, based on the detection of pestivirus antibodies in the bulk tank milk, was 9.7 % [5.9 %-15.7 %]. All PCR tests were negative, indicating the likely absence of active pestivirus circulation in these flocks. Although the observed pestivirus seroprevalence was found to be low in Belgian small ruminants, this study also showed, based on VNT results, that they are exposed to several pestivirus species: BDV, BVDV-1 and BVDV-2. 22.4 % of the farms included in the serological survey were holding both a small ruminant flock and a cattle herd, hence with a potential risk of contact between the two species. There was a significant positive association between pestivirus seropositivity in the sheep/goat flocks and the presence of a cattle herd in the same farm (OR = 2.42 (95 %C.I. [1.18-4.94]) but this association was not found for Ab-positive BTM in dairy flocks.


Assuntos
Doenças das Cabras , Infecções por Pestivirus , Doenças dos Ovinos , Animais , Anticorpos Antivirais , Bélgica/epidemiologia , Bovinos/virologia , Ensaio de Imunoadsorção Enzimática/veterinária , Doenças das Cabras/epidemiologia , Doenças das Cabras/virologia , Cabras/virologia , Infecções por Pestivirus/epidemiologia , Infecções por Pestivirus/veterinária , Estudos Soroepidemiológicos , Ovinos/virologia , Doenças dos Ovinos/epidemiologia , Doenças dos Ovinos/virologia
12.
Viruses ; 13(7)2021 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-34199054

RESUMO

Nairobi sheep disease orthonairovirus (NSDV) is a zoonotic tick-borne arbovirus, which causes severe gastroenteritis in small ruminants. To date, the virus is prevalent in East Africa and Asia. However, due to climate change, including the spread of transmitting tick vectors and increased animal movements, it is likely that the distribution range of NSDV is enlarging. In this project, sheep and cattle (hitherto classified as resistant to NSDV) were experimentally infected with NSDV for a comparative study of the species-specific pathogenesis. For this purpose, several new diagnostic assays (RT-qPCR, ELISA, iIFA, mVNT, PRNT) were developed, which will also be useful for future epidemiological investigations. All challenged sheep (three different doses groups) developed characteristic clinical signs, transient viremia and virus shedding-almost independent on the applied virus dose. Half of the sheep had to be euthanized due to severe clinical signs, including hemorrhagic diarrhea. In contrast, the course of infection in cattle was only subclinical. However, all ruminants showed seroconversion-implying that, indeed, both species are susceptible for NSDV. Hence, not only sheep but also cattle sera can be included in serological monitoring programs for the surveillance of NSDV occurrence and spread in the future.


Assuntos
Doenças dos Bovinos/diagnóstico , Doença dos Ovinos de Nairobi/diagnóstico , Doença dos Ovinos de Nairobi/patologia , Nairovirus/genética , Nairovirus/patogenicidade , Doenças dos Ovinos/diagnóstico , Animais , Bovinos/virologia , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/imunologia , Feminino , Masculino , Técnicas de Diagnóstico Molecular/métodos , Doença dos Ovinos de Nairobi/epidemiologia , Doença dos Ovinos de Nairobi/imunologia , Nairovirus/imunologia , Soroconversão , Testes Sorológicos/métodos , Ovinos/virologia , Doenças dos Ovinos/epidemiologia , Doenças dos Ovinos/imunologia , Carrapatos/virologia
13.
Virus Genes ; 57(4): 369-379, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34120252

RESUMO

The smallest polycistronic dsRNA segment-10 (S10) of bluetongue virus (BTV) encodes NS3/3A and putative NS5. The S10 sequence data of 46 Indian BTV field isolates obtained between 1985 and 2011 were determined and compared with the cognate sequences of global BTV strains. The largest ORF on S10 encodes NS3 (229 aa) and an amino-terminal truncated form of the protein (NS3A) and a putative NS5 (50-59 aa) due to alternate translation initiation site. The overall mean distance of the global NS3 was 0.1106 and 0.0269 at nt and deduced aa sequence, respectively. The global BTV strains formed four major clusters. The major cluster of Indian BTV strains was closely related to the viruses reported from Australia and China. A minor sub-cluster of Indian BTV strains were closely related to the USA strains and a few of the Indian strains were similar to the South African reference and vaccine strains. The global trait association of phylogenetic structure indicates the evolution of the global BTV S10 was not homogenous but rather represents a moderate level of geographical divergence. There was no evidence of an association between the virus and the host species, suggesting a random spread of the viruses. Conflicting selection pressure on the alternate coding sequences of the S10 was evident where NS3/3A might have evolved through strong purifying (negative) selection and NS5 through a positive selection. The presence of multiple positively selected codons on the putative NS5 may be advantageous for adaptation of the virus though their precise role is unknown.


Assuntos
Vírus Bluetongue/genética , Bluetongue/genética , RNA de Cadeia Dupla/genética , Proteínas não Estruturais Virais/genética , Animais , Austrália/epidemiologia , Bluetongue/patologia , Bluetongue/virologia , Vírus Bluetongue/classificação , China/epidemiologia , Vírus de RNA de Cadeia Dupla/classificação , Vírus de RNA de Cadeia Dupla/genética , Variação Genética/genética , Humanos , Índia/epidemiologia , Filogenia , Análise de Sequência de DNA , Ovinos/virologia
14.
Sci Rep ; 11(1): 10292, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33986444

RESUMO

Highly pathogenic bovine papillomaviruses (BPVs) were detected and quantified for the first time using digital droplet polymerase chain reaction (ddPCR) by liquid biopsy in 103 clinically healthy sheep. Overall, ddPCR detected BPVs in 68 blood samples (66%). BPV infection by a single genotype was revealed in 61.8% of the blood samples, and BPV coinfection by double, triple or quadruple genotypes was observed in 38.2% of liquid biopsies. The BPV-2 genotype was most frequently seen in sheep, whereas BPV-1 was the least common. Furthermore, ddPCR was very useful for detection and quantification; the BPV-14 genotype was observed for the first time in ovine species, displaying the highest prevalence in some geographical areas (Apulia). In 42 of the positive samples (61.8%), a single BPV infection was observed, 26 of which were caused by BPV-2 (61.9%) and 7 by BPV-13 (16.7%). BPV-14 was responsible for 7 single infections (16.7%) and BPV-1 for 2 single infections (4.7%). Multiple BPV coinfections were observed in the remaining 26 positive samples (38.2%), with dual BPV-2/BPV-13 infection being the most prevalent (84.6%). BPV infection by triple and quadruple genotypes was also observed in 11.5% and 3.8% of cases, respectively. The present study showed that ddPCR, a biotechnological refinement of conventional PCR, is by far the most sensitive and accurate assay for BPV detection compared to conventional qPCR. Therefore, ddPCR displayed an essential diagnostic and epidemiological value very useful for the identification of otherwise undetectable BPV genotypes as well as their geographical distributions and suggesting that animal husbandry practices contribute to cross-species transmission of BPVs.


Assuntos
Papillomavirus Bovino 1/genética , DNA Viral/sangue , Reação em Cadeia da Polimerase/veterinária , Ovinos/virologia , Animais , Bovinos , Genes Virais , Genótipo , Biópsia Líquida , Reação em Cadeia da Polimerase/métodos
15.
Vet Microbiol ; 257: 109066, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33866062

RESUMO

The parapoxvirus orf virus (ORFV) encodes several immunomodulatory proteins (IMPs) that modulate host innate and pro-inflammatory responses to infection. Using the ORFV IA82 strain as the parental virus, recombinant viruses with individual deletions in the genes encoding the IMPs chemokine binding protein (CBP; ORFV112), inhibitor of granulocyte-monocyte colony-stimulating factor and IL-2 (GIF, ORFV117) and interleukin 10 homologue (vIL-10; ORFV127) were generated and characterized in vitro and in vivo. The replication properties of the individual gene deletion viruses in cell culture was not affected comparing with the parental virus. To investigate the effect of the individual gene deletions in ORFV infection and pathogenesis, groups of four lambs were inoculated with each virus and were monitored thereafter. Lambs inoculated with either recombinant or with the parental ORFV developed characteristic lesions of contagious ecthyma. The onset, nature and severity of the lesions in the oral commissure were similar in all inoculated groups from the onset (3 days post-inoculation [pi]) to the peak of clinical lesions (days 11-13 pi). Nonetheless, from days 11-13 pi onwards, the oral lesions in lambs inoculated with the recombinant viruses regressed faster than the lesions produced by the parental virus. Similarly, the amount of virus shed in the lesions were equivalent among lambs of all groups up to day 15 pi, yet they were significantly higher in the parental virus group from day 16-21 pi. In conclusion, individual deletion of these IMP genes from the ORFV genome resulted in slight reduction in virulence in vivo, as evidenced by a reduction in the duration of the clinical disease and virus shedding.


Assuntos
Genes Virais/imunologia , Vírus do Orf/genética , Vírus do Orf/patogenicidade , Doenças dos Ovinos/virologia , Fatores Etários , Animais , Citocinas/genética , Citocinas/imunologia , Ectima Contagioso/imunologia , Ectima Contagioso/virologia , Genoma Viral , Mutação , Vírus do Orf/imunologia , Ovinos/virologia , Doenças dos Ovinos/imunologia , Transdução de Sinais , Virulência , Replicação Viral/genética , Eliminação de Partículas Virais , Sequenciamento Completo do Genoma
16.
Viruses ; 13(3)2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652882

RESUMO

Arthropod-borne Batai virus (BATV) is an Orthobunyavirus widely distributed throughout European livestock and has, in the past, been linked to febrile diseases in humans. In Germany, BATV was found in mosquitoes and in one captive harbor seal, and antibodies were recently detected in various ruminant species. We have, therefore, conducted a follow-up study in ruminants from Saxony-Anhalt, the most affected region in Eastern Germany. A total of 325 blood samples from apparently healthy sheep, goats, and cattle were tested using a BATV-specific qRT-PCR and SNT. Even though viral RNA was not detected, the presence of antibodies was confirmed in the sera of all three species: sheep (16.5%), goats (18.3%), and cattle (41.4%). Sera were further analyzed by a glycoprotein Gc-based indirect ELISA to evaluate Gc-derived antibodies as a basis for a new serological test for BATV infections. Interestingly, the presence of neutralizing antibodies was not directly linked to the presence of BATV Gc antibodies. Overall, our results illustrate the high frequency of BATV infections in ruminants in Eastern Germany.


Assuntos
Vírus Bunyamwera/genética , Vírus Bunyamwera/imunologia , Infecções por Bunyaviridae/imunologia , Infecções por Bunyaviridae/virologia , Ruminantes/imunologia , Ruminantes/virologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Bovinos , Chlorocebus aethiops , Ensaio de Imunoadsorção Enzimática/métodos , Seguimentos , Alemanha , Cabras/imunologia , Cabras/virologia , RNA Viral/genética , Ovinos/imunologia , Ovinos/virologia , Células Vero
17.
Virol J ; 18(1): 27, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33499896

RESUMO

BACKGROUND: Orf virus (ORFV) is a member of the genus Parapoxvirus and family Poxviridae. The virus has a worldwide distribution and infects sheep, goats, humans, and wild animals. However, due to the complex structure of the poxvirus, the underlying mechanism of the entry and infection by ORFV remains largely unknown. ORFV ORF047 encodes a protein named L1R. Poxviral L1R serves as the receptor-binding protein and blocks virus binding and entry independently of glycosaminoglycans (GAGs). The study aimed to identify the host interaction partners of ORFV ORF047. METHODS: Yeast two-hybrid cDNA library of sheep testicular cells was applied to screen the host targets with ORF047 as the bait. ORF047 was cloned into a pBT3-N vector and expressed in the NMY51 yeast strain. Then, the expression of bait proteins was validated by Western blot analysis. RESULTS: Sheep SERP1and PABPC4 were identified as host target proteins of ORFV ORF047, and a Co-IP assay further verified their interaction. CONCLUSIONS: New host cell proteins SERP1and PABPC4 were found to interact with ORFV ORF047 and might involve viral mRNA translation and replication.


Assuntos
Interações entre Hospedeiro e Microrganismos , Vírus do Orf/metabolismo , Proteínas do Envelope Viral/metabolismo , Animais , Células Cultivadas , Masculino , Proteínas de Membrana/metabolismo , Vírus do Orf/química , Vírus do Orf/genética , Ligação Proteica , Ovinos/virologia , Testículo/citologia , Proteínas do Envelope Viral/análise , Proteínas do Envelope Viral/genética
18.
J Immunol Methods ; 490: 112959, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33412173

RESUMO

Bluetongue is an insect borne (Culicoides) viral disease of small ruminants. The virus blankets the globe with a wide serotypic variation, numbered from 1 to 28. In India 21 different serotypes have been reported to be circulating across the various agro-climatic zones of the country. Non-structural proteins (NSPs) of bluetongue virus have always remained ideal target for differentiation of infected from vaccinated animals. The current study is an extrapolation of our previous work where a novel fusion construct comprising of bluetongue viral segment NS1 and NS3 was successfully cloned, expressed, purified with an efficient strategy for its suitable implementation as a diagnostic antigen. In this study, the applicability of the fusion construct has been further evaluated and optimised for field applicability. The fusion construct used in an ELISA platform projected a relative diagnostic sensitivity and specificity of 98.1% and 95.5% respectively against a pre-established test panel. The rNS1-NS3 ELISA showed substantially good agreement with the commercial BTV antibody detection kit. Finally, the study brings together the diagnostic capability of two NSPs, which can be a handy tool for sero-surveillance of bluetongue.


Assuntos
Vírus Bluetongue/fisiologia , Bluetongue/imunologia , Ensaio de Imunoadsorção Enzimática/métodos , Proteínas Recombinantes de Fusão/metabolismo , Ovinos/imunologia , Proteínas não Estruturais Virais/metabolismo , Animais , Anticorpos Antivirais/sangue , Bluetongue/diagnóstico , Imunidade Humoral , Proteínas Recombinantes de Fusão/genética , Ovinos/virologia , Proteínas não Estruturais Virais/genética
19.
Viruses ; 13(1)2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33418939

RESUMO

Most picornaviruses of the family Picornaviridae are relatively well known, but there are certain "neglected" genera like Bopivirus, containing a single uncharacterised sequence (bopivirus A1, KM589358) with very limited background information. In this study, three novel picornaviruses provisionally called ovipi-, gopi- and bopivirus/Hun (MW298057-MW298059) from enteric samples of asymptomatic ovine, caprine and bovine respectively, were determined using RT-PCR and dye-terminator sequencing techniques. These monophyletic viruses share the same type II-like IRES, NPGP-type 2A, similar genome layout (4-3-4) and cre-localisations. Culture attempts of the study viruses, using six different cell lines, yielded no evidence of viral growth in vitro. Genomic and phylogenetic analyses show that bopivirus/Hun of bovine belongs to the species Bopivirus A, while the closely related ovine-origin ovipi- and caprine-origin gopivirus could belong to a novel species "Bopivirus B" in the genus Bopivirus. Epidemiological investigation of N = 269 faecal samples of livestock (ovine, caprine, bovine, swine and rabbit) from different farms in Hungary showed that bopiviruses were most prevalent among <12-month-old ovine, caprine and bovine, but undetectable in swine and rabbit. VP1 capsid-based phylogenetic analyses revealed the presence of multiple lineages/genotypes, including closely related ovine/caprine strains, suggesting the possibility of ovine-caprine interspecies transmission of certain bopiviruses.


Assuntos
Bovinos/virologia , Genoma Viral , Cabras/virologia , Picornaviridae/isolamento & purificação , Ovinos/virologia , Sequência de Aminoácidos , Animais , Hungria , Filogeografia , Picornaviridae/classificação , Picornaviridae/genética , Reação em Cadeia da Polimerase , RNA Viral/química , RNA Viral/genética
20.
Vet Microbiol ; 252: 108933, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33278734

RESUMO

There is strong evidence that severe acute respiratory syndrome 2 virus (SARS-CoV-2), the causative agent of the coronavirus disease 2019 (COVID-19) pandemic, originated from an animal reservoir. However, the exact mechanisms of emergence, the host species involved, and the risk to domestic and agricultural animals are largely unknown. Some domestic animal species, including cats, ferrets, and minks, have been demonstrated to be susceptible to SARS-CoV-2 infection, while others, such as pigs and chickens, are not. Importantly, the susceptibility of ruminants to SARS-CoV-2 is unknown, even though they often live in close proximity to humans. We investigated the replication and tissue tropism of two different SARS-CoV-2 isolates in the respiratory tract of three farm animal species - cattle, sheep, and pigs - using respiratory ex vivo organ cultures (EVOCs). We demonstrate that the respiratory tissues of cattle and sheep, but not of pigs, sustain viral replication in vitro of both isolates and that SARS-CoV-2 is associated to ACE2-expressing cells of the respiratory tract of both ruminant species. Intriguingly, a SARS-CoV-2 isolate containing an amino acid substitution at site 614 of the spike protein (mutation D614G) replicated at higher magnitude in ex vivo tissues of both ruminant species, supporting previous results obtained using human cells. These results suggest that additional in vivo experiments involving several ruminant species are warranted to determine their potential role in the epidemiology of this virus.


Assuntos
Técnicas de Cultura de Órgãos , Sistema Respiratório/virologia , Ruminantes/virologia , SARS-CoV-2/fisiologia , Tropismo Viral , Replicação Viral , Enzima de Conversão de Angiotensina 2/genética , Animais , Bovinos/virologia , Especificidade de Hospedeiro , SARS-CoV-2/genética , Ovinos/virologia , Suínos/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...